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A Mean Spherical Model with Coulomb Interactions. 
II. Correlations at a Free Surface 

E. R. S m i t h  1 
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Studies of the mean spherical model with Coulomb interactions are continued, 
by considering a system on a d-dimensional lattice which is periodic in d - 1  
dimensions and has a free surface in the remaining dimension. It is shown 
explicitly that correlations along the free surface decay as y-d in d dimensions 
and show that the surface properties of this model are those expected for a 
charged system in its plasma phase. 

KEY WORDS: Spherical model; Coulombic systems; correlation function 
decay; surface properties. 

1. I N T R O D U C T I O N  

While many  new results have been obtained recently about  the structure of 
correlat ion functions in the plasma phase of  charged systems, there are few 
examples which can be worked out  explicitly. The recent review of 
Mart in  (1~ summarizes many  of these global sum rules and provides a com- 
prehensive list of references, including m a n y  papers on the two-dimen- 
sional, one-componen t  plasma. This model  has provided exact results 
which illustrate the general theory. Other  examples which illustrate some of 
the properties of Coulombic  systems are one dimensional,  (2-7) and are 
flawed as examples of the general theory of plasma states because the two- 
component ,  one-dimensional  Coulombic  system has no plasma phase. (3'4'7) 

In  the first paper  of  this series (8) (hereafter referred to as I), I intro- 
duced a mean  spherical model  on a lattice with Coulombic  interactions. I 
considered a d-dimensional lattice 

A = [ - M ,  M ]  |  [1, N ]  
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with a real-valued charge q(n) at each lattice site n. The electric potential 
q~(n, n'; X) at a site n on the lattice due to a unit charge at n' in boundary 
conditions X is the solution of the d-dimensional Poisson equation 

D.  ~ ~(n, n'; x )  = -o~,6,,. ,  (1) 

on the lattice A with boundary conditions X applied. In Eq. (1), coa is the 
surface area of a d-dimensional sphere of unit radius. The energy of a 
configuration {q(n), n E A } is then 

- !  2 W({q(n)}) - 2 , ~  .'cA2 q(n) q~(n, n'; X) (2) 

The charge variables q(n) are real numbers and the partition function is 
evaluated subject to the mean spherical constraint 

(n~Aq2(n))=]]AH Q 2 (3) 

where Q is an elementary charge magnitude and ]1All is the number of 
lattice sites in A. 

In I, this model was solved exactly for two cases: 

1. 2 M +  1 = N and X a Neumann boundary condition on A. 

2. Boundary conditions X periodic in each of the directions in which 
A spans 2M + 1 sites, and a Dirichlet condition at either end of the 
lattice in the other direction. 

To summarize the results of I, one may consider bulk and surface (or 
finite system) results. 

1.2. Bulk Resul ts  

1. The bulk interior of the system is in a plasma phase at small 
enough coupling F=/~Q2. For  d>~ 3 there is a critical coupling F =  F c. For  
F >  Fc the system is in a nonplasma phase in which charges oscillate in 
sign across the lattice. The critical behavior of the transition at F =  Fc is 
typical of a mean spherical model. 

2. In the plasma bulk phase, charges are screened. There is a critical 
coupling F=Fo(d)=2d/~o a. For  F<Fo(d ), the two-charge correlation 
function decays monotonically with a correlation length which decreases as 
F increases. When F = Fo(d ) the two-charge correlation function has range 
of exactly one lattice spacing. For  F>Fo(d) the two-charge correlation 
function oscillates in sign while decaying with an exponential envelope, the 
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correlation length increasing with increasing F. The Stillinger-Lovett sum 
rules for the thermodynamic limit of the correlation functions hold. There 
is no thermodynamic singularity at F =  Fo(d). 

Thus, the bulk of the system behaves as a Coulombic system may be 
expected to behave. 

1.2. Surface and Finite System Results 

1. The mean square dipole moment of the finite system obeys the 
expected altered forms in the different boundary conditions of the second 
Stillinger-Lovett sum rule. 

2. The mean square charge on a site close to a surface of the system 
is not Q2. In an applied field the value of ( q ( n ) )  relaxes to zero exponen- 
tially fast as n moves into the bulk of the system and the decay length for 
this relaxation is the correlation length of the bulk phase [but see the note 
in this paper after Eq. (37b)]. 

3. Correlations along the Neumann or Dirichlet condition surfaces of 
the system decay exponentially fast. 

These results are to be expected, but the large values of ( q ( n ) )  and 
(qZ(n)) which may be obtained for n close to a surface force one to 
consider whether the mean spherical constraint interferes significantly with 
the Coulombic nature of the system. 

This paper considers a mean spherical model with a free surface and 
shows that correlation functions along the surface can decay as y -a ,  where 
y is the projection onto the surface of the displacement between the two 
correlating charges. This finally establishes the charged mean spherical 
model as a proper Coulombic system, so that one may assume that much 
of the qualitative information one can find about it generalizes to other 
Coulombic systems. 

In the next section I introduce the lattice with a free surface, solve for 
~b in the boundary conditions used, and calculate the partition function, 
constraint equation, and correlation functions for the system in its plasma 
phase. In Section 3 I analyze charge-charge correlations along the free 
surface, and conclude with a discussion of these results in Section 4. 

2. THE M O D E L  A N D  ITS EXACT S O L U T I O N  

Consider a lattice Aa= [0, N]  | [ - -M,  M]  | Impose the boundary 
condition on cb(n,n';DF) that at n=(n ,v ) ,  with n =0 ,  ~((0, v ) , n ' ;DF)=0 ,  
that is, a Dirichlet condition. We have a free space condition for n > N. The 
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potential is periodic with period (2M + 1) in each of the components of v 
and v'. The potential is then 

�9 (n, n'; DF) = co~ I< ~ (2M + 1 )-  (d-~) exp 2niK- (v - v') 
~c~ 2M+ 1 

f '~ dk exp[ik(n - n')] - exp[ik(n + n')] 
x -~ 2(cosh ~ ( K ) -  cos k) 

(4) 

Here Ld is the ( d -  1)-dimensional lattice I - M ,  M], and o(K) is given by 

2~K~ "~ 
c o s h ~ ( K ) = l +  ~ 1 - c o s ~ J  (5) 

c ~ = 2  

Note that co(K)~0 as K ~ 0  and that for small K, ~o(K)= 
27z ]KI/(2M+ 1)+ O(K2). This potential is periodic with period 2M+ 1 in 
each of the components of v and v' and solves Eq. (1). Further, it is 
zero by inspection when n = 0, and as n ~ ~ this potential behaves as 
~dn'/(2M+ 1) a 1 + O(n-1), which is appropriate for such a potential. The 
partition function for the system is then, with F=/~Q2, 

Z(F, Ad)= dq(n 
n d - - ~  

x exp - 5 / ~  2 ~ q(n)~(n,n ' ;DF)q(n ' )  
n ~ A d  n' EAd 

(6) 

where IlAdll = ( 2 M +  1)a-IN. The matrix qS(n, n';DF) is Hermitian. Its 
eigenvalue equation can be written in the form 

~b(n, n'; DF) ~(n'; K, l) = #(K, l) ~(n; K, l) (7) 
n' ~ ad  

with 

~ ( n ; K , / ) = ( 2 M + I )  (a 1)/2exp[2niK.v/(2M+l)]tp(n;K,l) (8) 

The ~(n; K, l) are then the normalized eigenfunctions of 

N fro  eik(,-n')_eik(n+n')k)~(n,K, 
~a ~ dk 2(coshm(K)_cos '" l)=~(K,l)~(n;K,l)  (9) 
"2-'~ n - 0  -. zt 
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Some manipulation then gives 

~ 9 ( n + l ; K , l ) - 2  cosh[e)(K)] 2~t(K,l) O(n; K, l) + tp(n-1; K, l) (10) 

on 1 ~<n~<N-1 with 0(0;K, l ) = 0  and Eq. (9) with n = N  as the eigen- 
value equation. The solutions to (10) are of the form 

O(n; K, l)=A(K, l) sin[n0(K, I)] (11) 

with 

/I(K, l )=  �89 ~o(K)-cos 0(K,/)] 1 

and the 0(K, l) (1 <~l<~N) are the N solutions on (0, ~) of 

(12) 

e m(K ) - -  COS 0 
FN(O ) = cot(N0) sin 0 = 0 (13) 

This gives precisely the correct number of eigenvalues. The normalization 
constants A(K, l) are given by 

N 
2 ~ t2(n; K, l ) =  1 (14) 

This normalization is fairly messy, but I note here that if one works it out 
it gives 

- 2  sin[n0(K, l)] sin[n'0(K,/)] 
F~[0(K, l)] O(n; K, l) O(n'; K, l) - sin2[N0(K, i)] (15) 

a result that will be useful below. 
A unitary transformation of the q(n) to 

N 
0(K,l)= ~ ~ q(n) gJ*(n;K,l) (16) 

K ~ L d  n 1 

then allows the integrals in the partition function and the correlation 
functions to be performed simply as Gaussian integrals. We obtain 

K~Ld,=1 /312+~(K, / ) ]d  (17) 

and 

(q(n)q(n ' ) )  1 ~(n;K,/)  g" (n ;K, l )  
Q2 2F K~L~ t=~ 2 + �89 l) 

(18) 
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The mean spherical constraint then gives, by differentiating log Z with 
respect to 2, 

N 1 
2r= 2 ~ ;~+�89 IIAA-1 (19) 

K ~ - L  d / = 1  

The existence of the partition function requires 2 > -�89 l), VK E Ld, 
and 1 ~< l ~< N, so that we require 2 > --~d/8d. The value Fc(d) of F which 
gives the solution 2 = --O~d/8d to Eq. (19) then gives the critical point of 
the transition for d ~> 3. There is no such solution for d = 1, 2. Note that the 
value 2 = 0  is allowed. This gives Fo(d ) = 2d/o9 d. At F =  Fo(d) the bulk 
correlations have a range of exactly one lattice spacing, ( q ( n ) q ( n ' ) )  being 
zero in the bulk interior of the system if n ~ n' and n and n' are not nearest 
neighbors on the lattice. The correlation functions in the bulk interior of 
the system are the same as those found with other boundary conditions 
in I. 

We may write the sum over l in (19) as a contour integral using the 
nernel F'N(O)/FN(O). The contour must exclude the poles of this kernel at 
0 = Ok = krt/N, where the residue of this kernel is - 1. The resulting contour 
integrals and sums may then be written using the contour shift C1 ~ C2 
described in I. There are two cases: 

(i) 2 > 0: we define yo(K) by 

o) d 
yo(K) = ~-~ + cosh ~o(K) 

(ii) 2 < 0: we define Yo(K) by 

COd cosh co(K) cosh Yo(K)-  42 

We obtain, for 2 > 0, 

1 ~0d ( 2 M +  1) - ( d - l )  2r = ~ - 42---- 5 

2~-~~ "~ 1 1 1 ( 1 +  - -  - 
X K~Ld Sinhyo(K) l__e_2Nyo(K)/I ~ g + ( K )  (20a) 

and for 2 < O, 

1 co d 
2F=-~ + - ~  (2M + l ) - (a- l )  

1(  
x ~ sinhYo(K) 1+  

K ~ L  d 

2e - 2NY~ ) "~ 1 
I ~ K )  ] + ~ g_(K) (20b) 
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where 

e ~(K) cosh yo(K) + 1 + N sinh2[yo(K)]/sinh2[Nyo(K)] 
g+(K) = sinh 2 yo(K) {e_,,{K ) + cosh yo(K) + sinh yo(K) coth[Nyo(K)]  } 

(21) 

where g_(K)  is the same as g+(K) but with Yo(K) replacing yo(K). As 
N -+ oe and then M --+ 0% we find, for 2 > 0, 

1 CO d (2g)_(d_ 1) f dd_lK 1 (22a) 
2 F - ) `  4)2 E . . . .  U 1 sinhyo(K) 

and for 2 < 0, 

1 COd _ 
2 F =  ~ + ~ - / (2n )  (d--l) f dd_tK 1 (22b) 

[ . . . .  ]d-I sinh Yo(K) 

where 

(D d 
cosh y o ( K ) = ~ - +  1 + 

d 

(1 - c o s  K~,) (23a) 
~ = 2  

and 

d 
COd 

cosh Yo(K)= 4---~-+ 1 + ~ (1 - c o s K ~ )  (23b) 

We may take the limit 2 - + 0 +  of (22a) or 2 - + 0 -  of (22b) and in both 
cases find Fo(d) = 2d/coa for 2 = 0, a result known from I. 

3. C H A R G E - C H A R G E  C O R R E L A T I O N  F U N C T I O N S  

We consider here the charge-charge correlation function P(n, n'; v) 
given by 

P(n, n'; v) = (q(n, O) q(n', v) ) /Q  2 (24) 

which may be written using Eq. (12) in (18), 

P(n, n'; v) = 2 -~  6,,,,,,6,,,0- 8---- 5 ( 2 M +  1) - (a -  1~ 

x ~ e2'~i"'K/(2M+l)G(n,n';K) (25) 
K E L d  
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where 

N ~k(n; K, l) ~b(n'; K, l) 

G(n, n'; K) = ~ coa/42 + cosh co(K) - cos 0(K, I) l = l  
(26) 

In fact, we want 

" v )  lim lim p(n, n ,  = 
N ~ oo m ~ c::o 

P ( N -  n, N -  n'; v) (27) 

We want to study p for n, n' large, to give the correlation functions in the 
bulk interior of the system, and for n, n' finite, to give surface correlations. 

First, we must evaluate G. We may use Eq. (15) to write 

1 7 sin(n0) sin(n'0) 
G(n, n'; K) = - -  

2~i 1 FN(O) sinZ(NO)[coa/4)~ + cosh c o ( K ) -  cos 0] dO 

1 N 

- -  Z 
+ 2~ri k= --(N 1) 

s sin(n0) sin(n'0) 
x yc ~(k) FN(O) sinZ(NO)[cod/42 + cosh co(K) - cos 0] 

dO (28) 

where C~(k) is a small anticlockwise contour of radius ~ about Ok = kTc/N, 
the radius e being chosen small enough that no other singularity of the 
integrand than that at Ok occurs within the contour. The contour C1 is that 
defined in I. The sum over integrals round the C~(k) may be evaluated 
fairly simply to give 

J ( K )  1 ~(N fc  sin(nO) sin(n'O) 
= 2rc---i k= 1) ~(k) FN(O) sin 2 NO[coa/42 + cosh co(K) - cos 0] dO 

= H ( K , n - n ' ) + H ( K , n ' - - n ) - - H ( K , n + n ' ) - H ( K ,  - n - n ' )  (29) 

where 

1 N einOk 

H(K, n) = 4--N k = --~U 1) COa/42 + cosh co(K) -- cos Ok (30) 

We may write this sum as a contour integral round C1 using the kernal 
GN+ (0) ----- 2iN/(e 2iNO - -  1 ) if 0 ~< n ~< 2N and Gu_ (0) = --2iN/(e-2iu~ _ 1 ) if 
--2N<~n <<. O. We may then transform the contour C1 to C2, also given in 
I, and evaluate H(K, n) in terms of poles at cos 0 = coa/42 + cosh co(K). 

We obtain, for 2 > 0, 

1 e -  In[ Y~ -~- e - ( 2 N -  In[) yo(K) 

H(K, n) - 2 sinh yo(K) 1 - e -2Ny~ (31a) 
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and for 2 < 0, 

H(K, n ) =  
( _ _ l ) n  e - l n l  Yo(K)+e--(2N--Inl) Y0(K) 

2 sinh Yo(K) 1 - -  e -2NY~ 
(31b) 

The integral in Eq. (28) may be written as 

K(n - n') + K(n' - n) - K(n' + n) - K( - n  - n') 

where 
& einO 

K ( , , )  = - 
8rci O,c, FN(O) sin2(NO)[coa/42 + cosh co(K) - cos 0] 

dO (32) 

This expression for K(n) may be written using the contour C 2 and 
then evaluated. The results are, for )~ > 0, 

e (2N n)y~  e (2N+n)yo(K) 
K (n) =  -- eYO(K)_e_~O(K) (1 + A + ( N ,  yo(K), CO(K))) (33a) 

and for )~ < 0, 

K(n )=  ( - 1 ) "  

Here 

and 

e (2N n) Y0(K) _].. e (2N+n) Y0(K) 

e Y0(K) + e - o ( K )  (1 + A  (N, Yo(K), co(K))) 

(33b) 

2 s i n h ( y )  e 2Uy ,] 2Ny)2 _ 

A+(N, y, co)= 1 + ( eYe_~O) (1  - -e  2Ny)J (1 - - e  1 (34a) 

2 sinh Yo e-2Ng ~ e_2NY) 2 _ 
A (N, Y, co)= 1 + (er+--~7oj--(-(---7~Nr)j (1 -- 1 (34b) 

We are now able to construct G ( N - n ,  N - n ' ;  K) in the limit n ~ oe 
to obtain p(n, n'; v). When we put all the terms together we obtain, for 
2 > 0 ,  

cos 
p(n, n'; v ) =  ~--- 3.,,,,6v, O - 8--- ~ ( 2 M +  1) - (d-  1/ 

e -  In-- n'[ yo(K) 
X 2 e2rCiv'K/(2M+l) 

K ~ c~ sinh yo(K) 

COd ( 2 M + l )  (d 1) ~ e2,~i,,.K/(2m+l)e-O,+n,)yo(~) 
4F22 K~Ld 

x eyo(K)_e,O(~ ) 2sinl~yo(K) 
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and for 2 < 0, 

1 god(- 1)"- "' 
"P(n,n';v)=~~6n..'Sv, o+ 8F22 ( 2 M +  1) - (a - l )  

e2rav'K/(2M+t) e In n'l Y0(K) gOd 

x ~ sinh Yo(K) + 4---~ ( 2 M + l ) - ( a - 1 )  
KaLd 

X y'  e2~/v'K/(2M+l)(--1)'+"e -('+~')r~ 
KELd 

1 

1 2 sinl~ Yo(K)) (35b) x (ero(K)+ e ~(~) 

We may note that then two expressions separate neatly into a bulk correla- 
tion function 

ps(n, n'; v) = lim p(n, n'; v) 
n -- n' fixed 

and a surface correlation function 

t. V.V) " v) = p(n, n, v)--  ps(n, n, ps(n, n, (36) 

Thus, in the limit M ~ ~ we have, for 2 > 0, 

and for 2 < 0, 

where 

1 6. ,6~ fi _ o___~ z (27z)_ (a_ 1 ) ps(n, n'; v) = ~ - ~  . , 8/"2 

x fR dd-lKeiK'v In-- ' ly0(K) 

sinh yo(K) (37a) 

pB(n, n'; v) = ~ g i  gi., 0 + 8 -~--~0"21z ( 2 n ) - ( ' -  1) 

x fR~ dd-lKeik'*(--1)'-"e-I'-"'lsinh Yo(K) to(X) (37b) 

d 

c o s h g o ( K ) = l +  ~ ( 1 - c o s K ~ )  
~ = 2  

and for 2 > 0 ,  coshyo(k)=coa/42+coshgo(K) ,  while for 2 < 0 ,  
cosh Y o ( K ) = - m a / 4 2 - c o s h g o ( K ) .  The region Ra is I - re ,  n]  a-1. These 
bulk correlation functions are exactly the same as the bulk correlation 
functions found in I, a result to be expected. The bulk correlation length 
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is l/y0(0 ) for 4 > 0  and 1/I10(0 ) for 4 < 0 ,  not the results given after 
Eqs. (103) and (104) in I. Those results in I are valid only in the limit as 
2 ---, 0. (I thank the referee of the present paper for pointing out the error 
in I.) 

The surface correlation functions are a diffeent matter. They may be 
written, for 2 > 0, 

COd 1 f dd_l K eiK.Ve_(n+n,)yo(K) 
ps(n, n'; v ) -  4F22 (2~)d--  1 Rd 

1 
x[(eYO(K) e o~(g))-i 2 sinl~yo(K)] (38a) 

and for 2 < 0, 

co d 1 f 
p,(n, n'; v ) =  +4F22 (2re)a_ 1 Rd 

dd- lK eik'"(_ l )"+n' e-(n+"') ro(K) 

x I(er~ + e-'~ 1 1 1 
2 sinh- Yo(K) (38b) 

The functions yo(K) and Yo(K) are analytic in the K~, the K~ being the 
components of K, but co(K) is not analytic at K = 0 ;  for small K, 
,o(K) _~ tKI. 

Note that the inverse two-dimensional transform of ]K[ is - 1 / ( 2 u  Jr[ 3) 
and the inverse one-dimensional transform of IK] is - 1 / ( 2 u  Jr[Z). 

Thus, for 2 > 0, the long-range part of the surface correlation function 

e-(n'+n+ 1) y0(0) 

p~(n, n'; v ) =  -- 4nF2 lvJ 3 for d =  3 (39a) 

is 

e-(n'+n+ 1) yo(O) 

p~(n, n'; v) = - 27rF2 Iv[ -2 for d =  2 (39b) 

while for 2 < O, 

( _ 1). +.' e - ( .  +. '+ ~) vo(o) 
t ' V ) _  ps(n, n, 

4rcF2 
Iv[ d for d = 3  (39c) 

(-- 1)" + "  e - (n+n'+  1) ro(O) 
t 'V)__  ps(n, n,  

2~F2 
Ivl-2 for d = 2  (39d) 

We may now define 

Ms(v)= ~ ~ p s ( n , n ' ; v )  
n=0 n '=0 

(40) 
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and evaluate it quite simply. We obtain 

M s ( v ) = - ( 8 u 2 F )  l 

Ms(v) = --(2~2F)-~ 

Smith 

for d = 3  (41a) 

for d = 2  (41b) 

4. DISCUSSION 

The main results of this paper are Eqs. (39) and (41). They show that 
while the system is in a high-temperature phase the surface correlation 
functions decay algebraically, not exponentially as the correlations do in 
the bulk of the system. Equations (41a), (41b) show that the correlation 
functions obey the sum rule discussed by Martin (1) and first introduced by 
Jancovici. (9'1~ They obey this sum rule at all couplings which allow the 
system to be in its high-temperature phase, whether the bulk correlations 
are decaying monotonically or alternating in sign. There is no alteration of 
sign with [vl in this long-range part of the surface correlation function even 
when F >  F o I d[. 

The correlation functions in the bulk may be evaluated by an 
asymptotic expansion in large Inl. This gives a bulk charge-charge correla- 
tion function at large [hi. For 2 > 0  this is composed of an algebraically 
decaying factor times exp(-Inl/L),  where L =  1/yo(0) is the correlation 
length for the system. For 2 < 0 the situation is similar but the asymptotic 
expansion for ps(n, n') contains an extra factor 

d 

[I ( -  
e = l  

and the correlation length is L = 1/Yo(0). 
The surface correlation functions have quite different long-range 

behavior. The amplitude of the Iv[-a factor decays exponentially fast as the 
sampling distances n, n' from the surface increase. The correlation function 
for this decay is l/y0(0 ) [or 1/Yo(0)] and the sign of this amplitude 
oscillates as ( - 1  )" +"'. This surface layer correlation length L is the same 
as the bulk correlation length. For 2 > 0 we have 

l (log {~-~ + l + [(4~1 + 1)2-111/2}) -1 (42a) 
L+ =yo(0) = 

and for 2 < 0 we have 

L_ yo(O ) log 1 + 1 (42b) 
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For 2 > 0 the surface correlations do not oscillate in sign ith increasing 
components of v, so that for F > F o ( d )  the nature of the decay of the 
charge-charge correlation functions with v is roughly similar to that for 
]~ < to(d) .  

At F =  Fo(d), where the bulk charge-charge correlation function is 
nonzero only if n = n '  or if n and n' are nearest neighbors, the surface 
correlation function is zero if n and n' are not both zero. In this case the 
long-range part of the surface correlation function is restricted to the sur- 
face layer n = n ' =  0 only. This reflects the behavior of the surface correla- 
tion functions in the two-dimensional, one-component plasma at F =  2. In 
that system the long-range surface correlations are damped with a 
Gaussian decay as the sample points move into the bulk, which reflects the 
Gaussian decay of the bulk correlation functions at F =  2. In this mean 
spherical model the Gaussian decay is replaced by a decay to zero over one 
lattice spacing, both in the bulk correlation functions and in the decay of 
the surface correlation amplitude as the sample points move into the bulk. 

At F = F0(d), the long-range part of the surface correlation function is 

, ~(-(l/12~)Iv1-32 for d=3  (43) 
P s ( 0 ' 0 ' v ) = ( - ( 1 / 4 n )  Ivl for d = 2  

The fact that the long-range part of the charge-charge correlation 
function obeys the standard Coulombic sum rules means that this charged 
mean spherical model really does behave as a Coulombic system. The mean 
spherical constraint does not play much of a role near the surface, since 
one knows, from I, that very large fluctuations are possible at the surface. 

One may then place some reliance on the properties of such a system 
at a surface bounded by a dielectric. I shall turn to that problem in a later 
paper. 
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